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CHAPTER 1

INTRODUCTION

The design of many spacecraft control systems is based upon a rigid
body model but actual spacecraft will have some fliexible dynamics. When
the flexible modes are outside the bandwidth of the control system, they
will not affect control system stability. For some spacecraft, the
bending modes may spiliover into the control system bandwidth. This

spillover can lead to unwanted jet firings and may destabilize the sys-

tem.

The Space Shuttle is an example of a spacecraft in which flexibility
is of concern. The Shuttle's control system assumes rigid body dynam-
ics. The bending modes of the orbiter are well outs.ide the control
bandwidth and so are not a problem. When the Shuttle is manipulating
large payloads on-orbit, however, flexible modes can be low enough in

frequency to spiliover into the control system bandwidth.

The Shuttle is capabie of handliing payloads that weigh as much as
65,000 1bs. which is over a quarter of a typical Shuttle on-orbit mass
of 226,000 Ibs. Such large payloads attached to the Shuttle by its
long, flexible robot arm can lead to low-frequency, large-amplitude
dynamic interaction. These bending modes are picked up by the Shuttle's

sensors and can lead to undesirable and sometimes destabilizing jet fir-

ings.

Before each flight, a range of possible payload-arm-autopilot con-
figurations are simulated on a computer to determine the stable operat-
ing points. For large payloads, the stable operating range can be very
restricted. It is therefore highly desirable to come up with a way of

reducing the effect of low-frequency dynamics and thus expanding- the



range of stable payload operation. It is also desirable that the sol-

ution be a change in the control system software rather than a hardware

change as this is much cheaper and easier to implement.

This thesis investigates the use of notch filters centered on the
estimated bending frequencies to reduce the effect of low-frequency
Shuttle-payload dynamic interaction. The Shuttle-payload dynamics that
are studied are with payloads attached to the Shuttle's Remote Manipula-
tor System (RMS). Other payload-orbiter connections such as payloads
pivoted out of the cargo bay on a tilt table can lead to low-frequency
bending modes. Payloads attached to the RMS will, however, present
greater problems in that the bending modes will be hard to predict and

will tend to vary with time as the RMS changes in orientation.
The thesis is organized into the following chapters:

Chapter 2 looks at the problems caused by flexibility in the space-

craft and briefly reviews a few techniques for reducing bending mode
spillover.

Chapter 3 presents a technique for the identification of bending
mode frequencies.

Chapter 4 presents the design of the notch filters.

Chapter 5 is a review of the Space Shuttle and its on-orbit control
system.

Chapter 6 uses a simplified model of the Shuttle and its control
system along with a describing function representation of the nonlinear

phase plane controller to analyze the effect of the notch filters on the

closed-loop system performance.

10




Chapter 7 presents simulation results for two 1large payloads

attached to the Shuttle's RMS with and without the notch filters.

Chapter 8 gives conclusions and a few recommendations for

work .

11
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CHAPTER 2

FLEXIBILITY IN SPACECRAFT

2.1 Introduction

This chapter investigates the effect flexibility has on the closed-
loop attitude control of spacecraft. The way uncontrolled bending modes
can alter the performance of a simple control system made up of a linear
state estimator and linear state feedback is shown in detail. Control
and observation spillover of residual flexible modes is shown to be
destabilizing. Reducing the spillover of residual flexible motion

should therefore improve attitude control of spacecraft.
2.2 Modelll Flexible S I

In theory, flexible structures require an infinite number of modes
to completely describe their motion. Flexible structures are distrib-
uted parameter systems whose dynamics can be represented by partial dif-
ferential equations. In practice, however, the structure is modelled
with its mass lumped at a finite number of node points. Using finite

element methods, the structure can be represented by a second-order
matrix differential equation,

Mg+Dg+Sq=f 2.1)

where

= generalized displacement vector
= mass matrix

damping matrix

= gstiffness matrix

- U O =X 0
n

= input force vector

12




The system can now be described by,

. n 1] I 1 R 0 . 2.8)
X= 1. = . .
n —92 -21Q] | ¢DT
or
x=Ax+Bu (2.9)

The sensors are assumed to measure various linear and angular posi-

tions and rates. The measurements can be represented as,

y=H1 q+H2c'q (2.10)

y=Hon+ Hoq (2.11)

y = [He Hol " (2.12)
n

y = C x (2.13)

2.2.1 Model Reduction

The state space representation of a ffexible structure given by
Equations 2.9 and 2.13 is a convenient form to work with. However,
including all the modes from the finite element model can lead to very
large matrices. This model may often be too large to be practical in

the evaluation and design of the control system.

A smaller, evaluation model is often constructed as a truncated ver-

sion of the finite element model. This truncation can be as simple as

14




The finite element model can be transformed into modal coordinates by,
where

n = modal displacement vector

¢ = mode shape matrix
The matrix of mode shapes satisfies the equation,

dMP = I (2.3)

where I is the identity matrix. The system written in modal coordinates

becomes,

Mb 'y + Db m + SO 3 = f (2.4)
Multiplying by ®' gives,

(@TMD)y + (@D m + (DTSD)q = TF (2.5)

With proportional or light damping, this is often rewritten as,

W+ 200 o+ 02y o= (2.6)
where

Q = diagonal matrix of natural freguencies

{ = diagonal matrix of damping ratios

To put the system into state space form let,

x = |, (2.7)

13



including only the low frequency modes. More sophisticatea techniques
involve the use of quadratic cost functions to rank the importance of
each mode to various constraints. The evaluation model is made large

enough to retain an accurate representation of the structure but not so

large as to be unwieldy to use.

2.2.2 Controlled and Residual States

The number of controllied states in most spacecraft is quite small.
Flight computer limitations allow only the rigid-body and perhaps a few
of the dominant bending modes to be tracked and controlled. The system
model can be divided into controlled and residual states. The states
used in a feedback control system will be called the controlled states,
and the remaining states called residual states. Using this division,

the states in Eq. 2.9 can be rearranged as,

el R Xl 1B (2.14)
Xr 0 Af xr BI'
and Eq 2.13 becomes,
y = [c( cr] XC (2.15)
Xr

2.3 State Estimator

The state estimator provides estimates of the system's states to the

feedback controller given the set of measurements. The estimated state,

X,» follows the differential equation,

e!?

15



;e = A, x, + B, u+ K({y - C. x,) (2.16)
X, = (A, - KCJOxg + B u+ Ky 2.17)

Let the estimation error, e, be defined as,

e = X, = Xg (2.18)
The governing differential equation for the estimation error is,

e = x.~x, = A x.+B_u-=-(A -K CJxe - Bou - K(C, x. +C.x) (2.19)
é = (A, - K C) (x, - X)) - K C. x, (2.20)

e= (A, - KCJe - KC,x, (2.21)

If the real part of the eigenvalues of (A_ - K C)) are all negative,

then the estimator will be stable. Without residual mode dynamics and

other noise, the estimation error will decay to zero. The residual

states act as a driving term to the error equation.

2.4 _Controlier

The full-state feedback controiler takes the measured states, if

available, or the estimated states and produces the command vector u.

If all the states are available, the input u is,

us=-06 x_ (2.22)

making the closed-loop system,

x. = (A, - B, B)x, = A, X, (2.23)

16




The performance of the closed-loop system depends upon the eigenvalues

of A,,. With full-state feedback, the eigenvalues can be placed arbi-

traritly.

When the states are not directly available the estimated states, Xegs

are used to determine the input,

u=-06 x, (2.24)
making the system,
QC = A x. - B_ G x, (2.25)
which can be rewritten as,
x.= (A, -~ B, G)x_+B_GCe (2.26)

The residual state dynamics can be represented by,

; = A x.-B.G(x, ~e) (2.27)

r

Combining Equations 2.21, 2.26, and 2.27 gives the entire closed-

loop system,

Xe Ac-BG BG 0 [}x.
e | = 0 A -KC. -KC.|ie (2.28)
x_ -8 & BG A ||x,

17



2.5 Effect of Residual Modes

If no residual modes were present, the system would be,

<X A.-B.6 B.G ||x

= A, 2 2.29)
A.-KCc | |e " (

X
o

The eigenvalues of a matrix of the form,

|
ig|- -] = eigeiglc 2.30
eig ot T eig(A)eig(C) (2.30)

i
so the eigenvalues of the matrix A,, in Eq. 2.29 are,

eig(A,,) = eig(A, - B_ G)eig(A_ - K C) (2.31)

which are just the poles of the controller and the poies of the state
estimator. If the controller and estimator designs are stable then the

closed-loop system will be stable.

With residual modes the system is,

. R I o
z 2
"] -k,
el =1-----=--- (2.32)
X, -B_.G BrG| A, X,

18




or

N
N

A
= | 11 12 (2.33)

o
> >
>
5

If either A,, or A,, equal zero, then the eigenvalues of the entire
system would be the poles of the closed-loop system without the residual
modes, eig(A,,), plus the poles of the residual modes, eig(A,,). In
other words, the residual modes would add its poles to the closed-loop

system without changing the control system poles.

If Ay, and A,, are non-zero, then the poles of the control system

and of the residual modes will be changed. This means that the control
system will not perform as it was designed, possibly going unstable.
1,2

2.5.1_0f . | C 1 Spill

The submatrix A,, in Eq. 2.33 represents residual mode dynamics
picked up by the sensors. This spillover of residual mode dynamics into
the measurements is called observation spillover. Similarly, the subma-
trix A,, in Eq. 2.33 represents the excitation of the residual modes by

the control input and is called control spillover.

With no observation spillover, the residual mode dynamics can be

represented as,
x_ = A x.- B, G x, (2.34)

The control spillover does not change the poles of the residual mode
system, but acts as a driving term. The residual modes will be excited,
but will not be driven unstable. The controlled states and estimation

error will act as if no residual modes exist if there is no observation

19



spillover. [Exciting the residual modes can often be undesirable, but

without residual mode dynamics spilling over into the measurements, the
system will remain stable.

If there is observation spillover but no control spillover, the

estimation error will be,
e= (A, - KCJle~-KEC.x, (2.35)

The residual modes will act as a driving noise in the estimation error

equation. This in turn will affect the performance of the control sys-
tem with

x. = (A, - B, G)x, + B, G e (2.36)

the controlled state dynamics being driven by the estimation error which

is driven by the residual mode dynamics. The poles of the estimator and

controller, however, will not change.

Control and observation spillover can degrade the performance of the
entire closed-loop system. Control spiliover leads to excitation of the
residual modes. Observation spillover will tend to increase the esti-
mation error which in turn will affect the system states. Both control

and observation spiliover must be present, however, to drive the closed-
loop system unstable.

2.6 Stabilization by Reducing Spill

For a simple linear system, spillover of residual mode dynamics
moves the poles of the closed-loop system which can destabilize the sys-
tem. In nonlinear systems, it is harder to mathematically show the
effect of spillover. Many spacecraft use on-off thrusters, making their

control systems highly nonlinear. For such spacecraft, unmodelled bend-

20




ing dynamics picked up by the sensors can lead to jet firings which fur-
ther excite the residual modes. As in linear systems, this combination

of observation and control spillover can destabilize the system.

By reducing spillover, the real system should behave more like the
designed model of the system and potential instabilities from unmodelled

dynamics should be reduced.

2.6.1 Placing S Nod

One way of reducing observation spillover is to prevent residual
mode dynamics from being measured by sensors. If the residual dynamics
were known very well, the sensors could be placed at or near the nodes
of the residual modes. There would be little or no observation spill-

over of a residual mode that has a node near to or at a sensor location.

This is impractical for many spacecraft. It assumes that residual
mode shapes will be accurately known, that these modes will not change
with time, and that the control system designer has control over the
placement of sensors. These assumptions will not be true for many
spacecraft. In particular, for the Space Shuttie only one sensor, the
Inertial Measurement Unit (IMU), is used and its position is fixed in

the Shuttlie. This method therefore would not be useful.

A technique has been developed that can remove observation or con-
trol spillover for certain systems. For control spillover annihilation,

the desired control, U, will differ from the actual control, u, by

u=>Du (2.37)

21



This makes the controlled and residual state system, Eq. 2.14,

X, = Ax, + B.Du (2.38)
x. = Ax. + B.Du (2.39)

Control spillover will be eliminated if B_D=0.
chosen to

The actual control is

min ||u-G|| = mén | fu-Dul| | (2.40)
u

subject to BD =0

Elimination of observation spillover is accomplished in a similar

manner by changing the measurement signal as

y =Ty (2.41)

The estimation error equation, Eq. 2.21, will now become

e= (A, -KTCJe- (KTCJ x, (2.42)

Observation spillover will be eliminated if T C_ = 0. As before, the

measurement used will be chosen to

mi -y = mi -T (2.43
;nllwll +nIIY |l )

subject to T C. =0

For this technique to work the system (A_,B.D) must be controllable

or (A_,TC.) must be observable. This method will only work for systems

with a large number of overlapping control inputs or many overlapping

sensors and when the spillover from only a few residual modes is to be

22




removed. For every residual mode eliminated, the dimension of the con-
trol or measurement space will be reduced by two. Eliminating only a
few residual modes will therefore seriously restrict the control or

estimation of the system states.

For the Space Shuttle, only one sensor that measures attitude is
used, making observation spillover annihilation impossible. While there
are many availible control! jets, they are all located on the effectively
rigid orbiter itself. The controls on the robot arm and attached pay-
load are not availible to the attitude control system so the available
control can be modelled as acting at one point. Control spillover anni-
hilation therefore is also impossible. By disaliowing all control
action that excites the residual bending modes, there will be no way to

control the orbiter itself.

2.6.3 Notch Filters

Notch filtering the measurement signal is another way of reducing
observation spillover. Notch filters are bandstop filters that reject a
narrow band of freguency. Running the measurement signal through a
series of notch filters that are centered on the residual bending mode
frequencies will drastically reduce the observation spillover and help
to stabilize the system. The narrower the notch, the less effect the
filters will have on the rest of the measurement signal. Notch filter-
ing is a good way of reducing observation spillover without hurting the

estimation of the controlled states.

Notch filtering will work well when the residual bending mode fre-
guencies are well known. Observation spillover will increase sharply
with error between the residual mode frequencies and the notch filter
center frequencies. In conjunction with notch filters, on-board fre-
quency estimation should be used which can lock onto and track the bend-

ing frequencies. This thesis looks at using notch filters combined with
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real-time frequency identification to reduce observation spillover and
stabilize flexible spacecraft. Specifically, this technique is designed

and evaluated for the Space Shuttle with flexibly attached payloads.
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CHAPTER 3

IDENTIFICATION OF BENDING MODE FREQUENCIES

3.1 Introduction

In dealing with the problems caused by flexibility, it is important
to know the fregquencies of the bending modes. The design approach of

this thesis uses notch filters where accurate knowledge of the bending

frequencies is crucial.

Accurate a priori kquledge of the bending frequencies is, however,
unrealistic. Computer models of spacecraft dynamics are valuable analy-
sis tools but should not be depended upon to accurately predict bending
frequencies. The models will have simplifications and perhaps more
importantly, the spacecraft itself will be constantly changing. A
spacecraft's configuration changes in a flight; solar panels will
rotate, fuel burns will alter mass properties, etc., having a compli-

cated effect upon the bending modes.

It is therefore highly desirable to be able to identify bending fre-
guencies in flight using the spacecraft's various sensors. In partic-
ular, this thesis looks at identifying bending frequencies for the Space
Shuttle using its Inertial Measurement Unit (IMU). The identification
scheme used in this design was therefore chosen with digital computer
implementation in mind. Two alternative frequency identification meth-

ods are also briefly reviewed.
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2.2 Design Considerati | C .

The first design constraint is that the method chosen must be able
to identify frequencies to a relatively high accuracy. The identified
frequencies will be sent to narrow notch filters, so small errors in the
estimated frequencies can lead to dramatically reduced performance. In
addition to locking on to the bending frequencies, the frequency estima-

tor must be able to track frequencies as they vary with time.

It is reasonable to assume that rough predictions of the bending
frequencies will be availible for most spacecraft. Therefore the iden-
tification scheme should be able to use this a priori knowledge, when

available, to improve its performance.
Finally the frequency identification scheme in this thesis is

designed with the Space Shuttle in mind. Therefore only methods that

can be implemented on a digital computer are considered.

3.3 Power Spectral Densijty

One of the most common methods of identifying the frequencies of a
signal is by computing its power spectral density (PSD). The power
spectral density breaks the signal up into its frequency components.

Spikes in the PSD will represent the bending modes.

The power spectral density is defined as the Fourier Transform of
the autocorrelation function,

PSD = I {R_ ()} = SR () & g (3.1)

where

R (1) = EDx(t) x (t+7)] 3.2)
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with E[ ] representing the expected value. The PSD is commonly calicu-

lated by averaging periodograms of a signal where a periodogram is

defined as

|Fix (1)} ]2 (3.3)

e

where T is the time span of the sample. As T becomes large and as the
number of periodograms averaged becomes large, then the averaged perio-

dogram approaches the power spectral density.

On a digital computer, the PSD is calculated by taking a large time
sequence and dividing it up into smaller sequences. Each of these time
records is put through a Fast Fourier Transform (FFT) to calculate its
periodogram. These periodograms are then averaged to approximate the

power spectral density of the signal.

Computing the power spectral density of the measurement signal was
rejected as the frequency identification scheme because it has serious
drawbacks for our application. First, it is mainly used in off-line
processing. It is not a recursive algorithm; it requires large
sequences to be manipulated (transformed, averaged, filtered, etc.). A

spacecraft's digital flight computer is usually not well equipped for

such applications.

A second drawback is the difficulty of resolving frequencies with a
PSD. With a Discrete Fourier Transform, the frequency resolution is

equal to 1/T where T is the total time span of the sample.

As an example, the Space Shuttie may get bending frequencies
down to about 0.04 Hz with large payloads attached to its Remote
Manipulator System (RMS). The frequency resolution required for
notch filtering would be around 0.002 Hz, For a decent PSD let 10

periodograms be averaged. This means each periodogram must be at
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least 500 seconds long and the total sample length wouid be over

an hour.

Obtaining good frequency resolution complicates the problems of lim-
ited computer capacity and leads to long identification times making the

tracking of time varying frequencies nearly impossible. The power spec-

tral density as a frequency identification method was therefore
rejected.

3.4 Phase-lLock Loops

Phase-lock loops (PLL) can be used to lock onto and track oscillat-
ing signals. A PLL takes the output of a variable frequency oscillator
and compares it to the input signal. The difference is used to adjust

the variable oscillator until it locks onte the signal. The signal's
frequency and phase can thus be identified and tracked. The block dia-

gram of a PLL is shown in Figure 3.1.

A sin(ut+6) A sinfdwt+(0-4)] ¢ = 5

Phase .
Detector % Filter -

N\

v

2 cos (w t+d)

Variable
Frequency
Oscillator

Figure 3.1 Phase-Lock Loop
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quency and phase.
3.2. The input signal is multiplied with the variable frequency oscil-

3.4.1 Phase Detector

The phase detector takes the input signal and ouput of the variable

frequency oscillator and produces a signal related to the error in fre-

A diagram of the phase detector is shown in Figure

lator output. This results in two terms, the sine of the frequency and
phase difference and the sine of the frequency and phase sum. The sec-
ond of these terms is eliminated by a lowpass filter. When error in
freguency and phase is small, the sine of the error will be approximate-

ly the error itself and the PLL will act almost linearly.

A sinfawt+(0-4)] +
A sin(wt+o) A sin[(ute) t+ (0+4)] A sin[sut+(0-4)]

L
—— X< —> b >

2 cos (u t+d)

Figure 3.2 Phase Detector

3.4.2 Variable F Oscillal

In many diagrams of a PLL the variable frequency oscillator is

labeled a voltage controllied oscillator (VCO). A VCO produces an oscil-~

lating signal at a center frequency plus small frequency and phase cor-

rections controlled by an input voltage. On a digital computer, the

variable frequency oscillator would be designed to act as a VCO. A cen-

ter frequency, w_., is chosen as the best guess of the frequency of the

input signal. The closer o, is to the actual frequency, the better the

PLL will perform.
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3.4.3 Filter

The filter section can be a simpie gain or a proportional plus inte-
gral gain, or even chosen to make the PLL act as an extended Kalman fil-

ter. The filter section can best be understood by looking at a

linearized PLL block diagram, Figure 3.3.

o, + (6~ ¢ = Aw=(w-w)

G (s) >

1/s 1

Figure 3.3 Linearized PLL

If G(s) is chosen to be a simple gain, K, then the closed-loop linear-

ized system will be

(3.4)

If K is positive, then the phase will exponentially approach the

signal's phase with time constant 1/K.
If an integral gain is added to the filter, G(s)=K1+K2/s then the

closed-loop system would be

(3.5)
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where K, and K, are chosen for desired performance. More complicated
filters can be designed for more refined performance. These linearized

filter designs are then analyzed with the nonlinear PLL.

3.4.4 Advantages and Disadvantages of Pil's

Phase~lock loops are very effective at identifying and tracking fre-
quencies in real-time. They have been used in a wide variety of appli-
cations. PlLl's are particulary good if implemented in hardware rather

than software as they are availible as integrated circuits making them

cheap and easy to use.

Phase-lock loops use a priori knowledge of bending mode frequencies.
The closer the center frequency of the variable oscillator is to the
actual bending frequency, the faster the PLL will lock onto the right

frequency. Better a priori information will therefore lead to better

performance.

In the phase-ilock loop described above, it was assumed that the
amplitude of the input signal was known. This will not be true in prac-
tice. Imprecise knowledge of the amplitude will have a direct imbact on
the performance of the PLL. Macala® suggests using bandpass filters to
isolate each bending mode and then using a limiter on each mode to give

a constant, known amplitude.

Using phase-lock loops is often recommended for real-time frequency
identification. A series of PLL's can be used with center frequencies
set near the expected bending frequencies and they will lock onto and
track the bending modes in flight. For hardware implementation, PLL's
seem to be the best choice for real-time frequency identification. For
this thesis, however, a software identification scheme is desired.
While PLL's could be designed and implemented in software, a simplier

method was chosen and is described in the next section.
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3.5 Bang Fil | Zero-Crossing M

The frequency identification method chosen for this thesis
straightforward.

is very

A series of bandpass filters are used to isolate each

bending mode. The time between zero-crossings for each of these modes

is measured and is equal to half the signal's period. Every time the

signal crosses zero, there will be a new measurement of the signal fre-

quency. This is shown in Figure 3.4 for one bending mode.
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Figure 3.4 Zero-Crossing Measurement
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3.6 Band Fil Desi

The bandpass filters are designed as in Stearns® by taking an analog

lowpass filter, and then converting to a digital formulation.

Given an analog lowpass filter with transfer function H(s) having

a cutoff frequency of ., an analog bandpass filter can be constructed

with the frequency transformation,

s2+
1% (3.6)

with

we = w2 - W,y (3.7)

where w, and v, are the passband frequencies.

A bilinear transform can be used to convert from the analog bandpass
filter to a digital bandpass filter. The bilinear transform will dis-

tort the frequencies, so the passband frequencies in the analog filter
are prewarped to obtain the desired digital passband frequencies. This

prewarping is accomplished by

w1' = tan (w1T/2)
w,' = tan(w,7/2)

(3.8)

where T is the time-step of the digital filter. The digital transfer

function, Hpgps €an now be obtained from the transformation
2-1
(3.9

Hpgp (2) = Hgp (--=)
DEP AN

where 2z is the z-transform variable which is defined as
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[Hp ()]

!

A

2 = %7 (3.10)

This discrete transfer function can now be directly used to obtain the
filter's difference equation.

3.6.1 Choi ¢ Analog | Filter Desi

Three common types of lowpass filters are Butterworth, Chebyshev,
and Elliptic. Figure 3.5 shows the frequency response of these filters.
The Butterworth design has a smooth frequency response. The Chebyshev
design allows ripples in the passband but has a sharper cutoff than the
Butterworth. The Elliptic filter allows ripples in both the passband
and stopband but has a still sharper cutoff. These characteristics will
be retained when the lowpass filter is transformed into a bandpass fil-
ter. Ripples in the passband of the lowpass filter will lead to ripples

in the passband of the bandpass filter, etc.

_____ Butterworth ’

Chebyshev x

o - - e - - -

- >
L,

Elllptie -

[ S U U I |

< Frequency Frequency Frequancy

Figure 3.5 Lowpass Fiiter Prctotypes
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For frequency identification, the bandpass filters will be centered
on the a priori guesses of the bending mode frequencies. The bandpass
filters shouid be designed to provide more attenuation for frequencies
further away from the passband. This means ripples in the stopbands are
undesirable and the Elliptic filter will be ruled out. Another reason

for rejecting the Elliptic filter is that it is by far the hardest of

the three to design.

Deciding between the Butterworth and Chebyshev designs will depend
upon whether ripples in the passband are tolerable. The Chebyshev
design will be better at rejecting frequencies outside the passband and
so for many applications it would be the better choice. To minimize the
distortion of the measurement signal, the number of notch filters may be
limited to bending modes with significant amplitude. The output of the
bandpass filters may therefore be needed to estimate the amplitude of
the bending modes. Ripples in the passband will distort this amplitude,
so if amplitude estimation will be used, the Butterworth design would be

better. In this thesis the Butterworth design was chosen for this rea-

son.

Figures 3.6 and 3.7 show the pole pattern in the s-plane for the
Butterworth and Chebyshev lowpass filters. There is no real difference

in the difficulty of designing or implementing either filter.

3.6.2 Fil ord { Impl .

Choosing the filter order is a tradeoff between speed and noise
rejection. A larger filter will be better at rejecting frequencies out-

side the passband but will use more computer code and have greater prob-

lems with numerical stability.

35



¢ = w/n
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Figure 3..7 Chebyshev Polke Pattern
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The bandpass filter will be twice the order of the lowpass filter
prototype. An 8" order bandpass filter will have sides that drop away
like 4" order lowpass filters. Figure 3.8 shows the magnitude response
for Butterworth and Chebyshev 4" and 8" order bandpass filters. For
this thesis the 8" order Butterworth bandpass filter was selected

because the 4" order did not seem to adequately reject frequencies out-

side the passband.
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Figure 3.8 Bandpass Filter Comparison
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In implementing a digital filter, finite wordlengths become impor-
tant. Rounding off the filter coefficients will change the performance
of the filter. Larger filters will, in general, require higher preci-
sion coefficients. Large filters should therefore be designed by cas-
cading smaller filters. The 8t" order digital bandpass filter can be
broken up into two 4'" order bandpass filters which come from each pair
of cémplex conjugate lowpass poles. Figure 3.9 shows the effect cascad-
ing has on an 8" order bandpass filter with double precision coeffi-
cients. Some of the poles of the uncascaded filter fall outside the

unit circle actually making the filter slightly unstable.
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Figure 3.9 Effect of Cascading on Filter Poles
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In addition to cascading, it is also important to use a large enough
coefficient wordiength. Figure 3.10 shows half of the complex conjugate
poles for a cascaded 8" order bandpass filter with different word-
lengths. Straight single precision is inadequate, but calculating the
coefficients in double precision and truncating to single precision for
implementation shows little variation from full double precision imple-
mentation. Since single precision will mean less computer load, calcu-
lating in double precision and truncating to single precision for

implementation is the method picked for this thesis.
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Figure 3.10 Wordlength Effect on Filter Poles
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3.7 F Estimati

For each mode isolated by the bandpass filters, the frequency can be
estimated by measuring the time between the signals zero-crossings.
This will give a measurement of half the period of the bending mode.
After each bandpass cycle, the sign of the output is compared to the

sign of previous output. A change of sign will indicate that the signal
has crossed 2ero.

To determine when during the time-step the crossing occurred, the
signal is assumed to be linear throughout a time-step. This linear
assumption will be good if the time-step, AT, is much smaller than the

period, T. Figure 3.11 shows the linear approximation for the 2ero-
crossing.
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Figure 3.11 Linear Approximation for Zero-Crossing Measurement
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From Figure 3.11, the fraction of the time-step where the crossing

occurs, At , will be

at = -cto-o- (3.11)

The total time between crossings is calculated as

Tp = (AT-at, o ious) + K AT + at (3.12)
crossing

where K is the number of time-steps in the half-period where no cross-

ings occurred and T  will be the measured half-period. Each crossing

will yield a new measurement of the frequency, w_,, which will be
©n = -- (3.13)
T :

Nearby bending modes will only be partially attenuated by the band-
pass filter. These external modes leaking into the bandpass filter's

output will act as a driving noise in the frequency estimation. This
noise will cause the measured frequency to oscillate about the true fre-
quency. Smoothing of the frequency measurement was therefore added to
filter out these perturbations while tracking the mean of the signal,

which should correspond to the actual bending frequency.

To smooth the signal, the frequency measurement is passed through a
second-order system. The natural frequency and damping ratio can be
varied to achieve a good tradeoff between noise rejection and tracking

For the Shuttle with large payloads attached to its RMS, bending
A second-ord-

speed.
frequencies of interest usually fall between 0.03-0.2 Hz.
er system with a natural frequency of 0.015 Hz and a damping ratio of

0.707 was found to give good performance.
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When the bending mode frequencies are closely spaced together or

when the bending modes cannot be predicted very well, many bandpass fil-
ters with narrow passbands should be used to prevent multiple bending
modes from getting through a single bandpass filter. A beat response
will occur when two bending modes of similar frequency and amplitude get
through the same bandpass filter. This beat response is shown in Figure
3.12 along with its effect on the measured and smoothed frequency.
Periodically, the time between zero-crossings will be quite short, lead-
ing to spikes in the measured frequency. The smoother will try to fol-

low these spikes causing large errors in the estimated frequency.

A test was inserted to check whether the measured frequency is more
than 10% different than the estimated frequency. If it is, then the
measurement is changed to be limited to the 10% difference. This will

eliminate large spikes and yet allow actual step changes in the freguen-
cy to be tracked.

3.8 Estimating Modal Amplitud

A notch filter can be assigned to each estimated bending mode. This
will distort the measurement signal more than is necessary since many
bending modes may be too small to be of concern. Limiting the notch
filtering to only those modes with significant amplitudes will reduce
observation spillover while minimizing the distortion of the notched

signal. Estimating the modal amplitudes was therefore included with the
frequency estimation.

The amplitude of each bending mode is estimated using the output of
each bandpass filter. This output is oscillatory and will have the form

A sin ot. Squaring this output will give

(A sin ot)? = A? sinfot = A2 - A? cos 2wt (3.14)

2 2
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Passing this through a lowpass filter will eliminate the second term
leaving A2/2. The amplitdde can then be found by multiplying by 2 and
taking the square root. For the Shuttle, the measurement will be an
attitude but the angular rates will be of greater concern. The ampli-

tude of the angular rate can be estimated from the attitude as

rate = A We (3'15)

where o, is the estimated frequency. 1In summary, the angular rate of a

bending mode is estimated from the attitude measurement as

Measured Attitude =+ Bandpass » ( )2 =+ Lowpass

> x 2= ()2 s« w, = Angular Rate Estimate

3.9 Timing Consid .

The digital bandpass filters don't necessarily need to run at the
same rate that the measurements used for attitude control are taken. A
longer time-step will lessen the computer load. The bandpass time-step
should, however, be short enough to prevent aliasing, and to keep the

linear assumption used in determining the 2ero-crossing time valid.

When an oscillating signal is represented by a discrete set of
points, the sinusoidal signal that passes through the points will not be
unique. This is called aliasing; an example is presented in Figure
3.13. Aliasing will occur when there are bending modes of significant

amplitude with frequencies above the Nyquist frequency, Fy, which is
defined as

Fy = === (3.16)
2 AT
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For the shuttle, the significant bending modes are usualiy below around
0.2 Hz. Choosing the time-step of the bandpass filters to give a

Nyquist frequency well above 0.2 Hz will prevent any aliasing problems.

In determining the zero-crossing time, the signal was assumed to be
linear over a sampling period. This assumption will be good if the
bending mode's period is much longer than the bandpass time-step. Again
taking 0.2 Hz as the worst case, the smallest expected period will be 5
seconds. A bandpass time-step much less than this will justify the lin-

ear assumption used.

The attitude of the Shuttle is measured every 0.16 seconds. The
bandpass filters are chosen to run for only one axis at each measure-
ment. This will make the bandpass time-step three times the measurement
interval, as there are three axes, so ATg, = 0.48 seconds. This gives a
Nyquist frequency of 1.04 Hz which is well above 0.2 Hz. The shortest
expected important modal period is around 5 seconds which is over 10
times the bandpass time-step. Running the bandpass filters one axis at
a time will give a short enough time-step and the computer load of the

frequency identification will be cut by a factor of three.
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CHAPTER 4

NOTCH FILTERS

4.1 Introduction

This chapter presents the design of the notch filters, particularly
2" and 4" order filters. A simple model consisting of a rigid body
plus one bending mode is used to represent a flexible spacecraft. The
combined frequency response of>this model and the notch filters is used
to compare the different order filters and to study how errors in the
bending frequency estimates can affect the system. Added phase lag due
to the notch filters is seen to be of potential concern suggesting that

the 2"° order filter may be a better choice than higher order designs.

The notch filters are designed very much like the bandpass filters
in Section 3.6. An analog lowpass filter prototype is selected. The
lowpass prototype is then transformed into a bandstop filter which s

converted into digital form by the use of a bilinear transform.

The Butterworth design was chosen as the lowpass prototype because
its smooth frequency response will minimize distortion of the signal
outside the stopband. The pole patterns of the Butterworth lowpass pro-

totypes for 2™ and 4" order notch filters are shown in Figure 4.1.

Given the lowpass filter with transfer function H ,(s) having a cut-
off frequency w., an analog bandstop filter can be constructed with the

frequency transformation,
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Hgg (s) = H p(-=-%~=-- 4.1
BS LP Sz+m1m2 ) ( )

with
wc = (l)2 - w1 (4.2)

where w, and w, are the stopband frequencies. When w, and w, are close
together, the stopband will be in the shape of a narrow notch. The cen-

ter frequency of this bandstop, or notch filter, will be

= oot 4.3)

Ideally, the center frequencies of the notch filter will be equal to the
bending mode frequencies. The notch filter should have a stopband wide
enough to aliow for small errors in the estimated frequency but not too
wide as to overly distort the signal. For the rest of this chapter and

in the final design, the passband frequencies are chosen as v, = 0.9 o,

and w, = 1.1 Wy

A bilinear transform is used to convert the analog notch filter to a

digital form. As with the bandpass filter, the stopband frequencies are

prewarped by

w,' = tan(w,7/2)
w2' = tan (sz/Z)

(4.4)

where T is the time-step of the digital notch filter. The digital

transfer function, Hys c¢an now be obtained by the transformation

5
= ——e 4.5
H (2) = Mg (===2) (4.5)
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The frequency response of a 2" and 4" order notch filter is shown
in Figure 4.2. The 4" order notch filter has sharper cutoffs in the
magnitude response but has twice the phase shift of the 2" order fil-
ter. If added phase lag is of concern, a higher order filter is not

necessarily better than a low order filter.

4,3 Effect of Notch Filters

To study the effect of the notch filters, a simple plant consisting
of a rigid body plus one bending mode is used to represent a flexible
spacecraft. This simple model is used to compare different order notch
filters and to study how errors in estimating the bending freguencies

may alter the performance of the system.

A block diagram of the simple spacecraft model! is shown in Figure
4.3. Part of the rigid body control acceleration goes into exciting the
bending mode; this fraction is represented by B. For this analysis,
p=0.1 and the structural damping, {,=0.005. Figure 4.4 shows the fre-
quency response of this system. The spike in the magnitude response is

due to the bending mode and can lead to closed-loop instabilities.

Figure 4.5 shows the combined freguency response of the plant and
notch filter. Both 2" and 4'M order notch filters eliminate the spike
in the magnitude response. The 4" order filter, however, adds a larger
phase shift. Figures 4.6 and 4.7 show the combined frequency response

with the notch filter center frequency in error by 5% low and high

respectively.

The 2™ and 4" order filters can easily remove the flexible motion
from the signal when the bending frequency is known. When there is an
error in the frequency estimate, the effect of the notch filters can
substantially change. A high estimate is of particular concern because

the notch filters will add phase lag at the bending freguency with only
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partial attentuation of the magnitude. This added phase lag will tend
to destabilize the system. From the frequency plots, the 2™ order fil-
ter would seem to be the better choice. The slightly better magnitude

response of the 4" order filter does not make up for the added phase

lag introduced.
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CHAPTER 5

REVIEW OF SPACE SHUTTLE ATTITUDE CONTROL SYSTEM

b1 Introduction

The spillover reduction technique described in the last two chapters
was designed with the Space Shuttle in mind. This chapter reviews the
Shuttle's attitude control system to allow more detailed design and
analysis of the notch filters and their effect on the closed-loop sys-
tem. The sources of flexible dynamics are also reviewed. There are
many problems created when this flexibility interacts with the attitude
control system. It is hoped that notch filtering of the measurement

signal would help alleviate some of these problems.

A block diagram of the space shuttle on-orbit attitude control sys-
tem is shown in Figure 5.1. Attitude and rate errors, ¢, and wo,, are
sent to the phase plane control system which produces a commanded accel-
eration, o.. The control jets are fired to produce an acceleration, «,
as close as possibie to a,. The resulting attitude of the Shuttle is
measured by the Inertial Measurement Unit (IMU). This measured atti-
tude, 6,, along with the feedforward prediction of the rate change due
to the jet firing, Awppy, are used to produce an estimate of the angu-
lar rate, w. The estimated rate and measured attitude are fed back to

form the error signal. The control system cycles every 80 ms, with IMU
measurements every 160 ms.

The control system operates for each axis separately. Euler coupl-
ing between axes is usually not of concern because the angular rates are

usually quite small. Euler coupling will appear as a small acceleration
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disturbance which can be estimated along with external disturbances such

as those due to gravity gradient torques.

The control system has two levels of operation. For larger control
action, the Primary Reaction Control System {PRCS) is used. The PRCS
uses the primary jets to control the spacecraft. For tighter control
about an operating point, the Vernier Reaction Control System (VRCS) is
used. The VRCS uses the much less powerful vernier jets. The deadbands
and rate limits of the phase plane, the state estimator gains, and the

jet selection method are different for PRCS and VRCS modes of operation.

2.3 Control Jets

The control jets are selected to fire to produce an acceleration
which matches as closely as possible the commanded acceleration. The
control jets used for attitude control! are a number of on-off thrusters
that are placed around the Shuttle. There are 38 primary jets which
produce a force of 870 lbs., and 6 vernier jets which produce 24 ibs. of
force. The jet locations and the directions in which they fire are
shown in Figure 5.2.

The primary and vernier jets are selected by two different methods.
The primary jets are selected by a table look-up scheme of preselected
jet combinations. The vernier jets are selected by a dot product algo-
rithm. The predicted acceleration vector for each vernier jet is dotted
with the commanded acceleration vector. The jet with the largest dot
product will come closest to producing the commanded acceleration and so
is selected to be fired. If a second jet has a dot product of greater
than 0.5 times the first jet's dot product, then this second jet will
also fire. Similarly, if a third jet has a dot product of greater than
0.4 times the first jet's dot product, then it will fire too.
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The change in the Shuttie's angular rate that each jet will produce
over one 80 ms cycle is predicted before each flight and loaded into the
computer. Up to six sets of these predicted rate changes can be loaded
for various expected inertia configurations. When a jet fires, the pre-
dicted angular rate change is fed forward to the state estimator. This

feedforward information improves the performance of the estimator.

5.4 Inertial M t Unis

The 1Inertial Measurement Unit (IMU) has a stable platform that is
kept fixed in inertial space by a set of gyroscopes. The outside of the
IMU is fixed to the body of the Shuttle. Thg stable platform is iso-
lated from the body frame by a series of gimbals. Reading the gimbal

angles gives the orientation of the Shuttlie with respect to an inertial
frame of reference.

The measured gimbal angles are used to form a quaternion that speci-
fies the relationship between the Shuttle's body axes and the inertial
frame. For each measurement cycle, this quaternion is constructed and
compared to the previous quaternion to produce an attitude increment.
The measured attitude used for the state estimator is the previous meas-

ured attitude plus the latest attitude increment.

The measurement cycle time is 160 ms, so the measurements are incor-
porated on every other control cycle. There is a delay in the process-
ing of the attitude measurement of 232 ms. The measured attitude will
therefore be approximately three control cycles old when it is used.

This delay acts as an additive, frequency dependent phase lag of around
90 deg/Hz.
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2,5 State Estimator

The state estimator takes the measured attitude plus the predicted
angular rate change due to the jet firings and produces an estimate of
the disturbance acceleration and the vehicle angular rate. Sources of
the disturbance acceleration will include bending motion, ignored Euler
coupling, and external torques such as gravity gradient and aerodynamic
torques. The disturbance acceleration estimate is fed to the rate esti-
mator and is also used to adjust a bias switch line in the phase plane.
The estimated angular rate is fed back to produce the rate error which

drives the control system.

A simple block diagram of the state estimator is shown in Figure
5.3. The state estimator is broken up into two components, a disturb-
ance acceleration estimator and an angular rate estimator. The two were
separated to allow independent design so as to achieve different desired
response characteristics. The acceleration estimator is designed to
track slowly varying disturbances such as those due to gravity gradient

torgques. The step response of the disturbance acceleration estimator is

shown in Figure 5.4.

The rate estimator is designed to correct errors in the jet feedfor-
ward information. Different sets of gains are therefore used when pri-
mary and vernier jets are in operation. The primary jets produce much
larger rate changes, so the estimator gains for primary operation were
chosen to give a faster response. When the vernier jets are used, the
estimator does not need to be as fast, so the gains were chosen to give
a smaller bandwidth which will be better at rejecting noise. The fre-
quency response of the rate estimator for both primary and vernier jets

is shown in Figure 5.5.
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5.6 Phase Plane Controller

The phase plane controller takes the attitude and rate error for
each axis separately and produces a jet firing command for each axis.
The jet selection logic takes these commands and determines which jets
to turn on or off. Figure 5.6 shows typical phase plane trajectories
for the different jet firing commands. The phase plane controller is
shown in Figure 5.7. The phase plane deadband and rate limit have a big
effect on the performance of the system. Tight deadbands and rate lim-
its will give better tracking about the operating point but will lead to
increased jet firings and may also destabilize the system. A typical
trajectory is shown in Figure 5.8 where a large initial error is brought

into a stable limit cycle about the operating point.

5.7 § ¢ Bending Mode D .

The flexibility of concern are those bending modes that are sensed
by the IMU but are only partially attenuated by the state estimator.
These bending modes will have frequencies below around 0.2 Hz. The
flexibility of the orbiter itself will have bending frequencies well
above this. Paylioads attached to the Shuttle by fiexible connections

can, however, often lead to low freguency vibrations.

Payloads pivoted out of the Shuttle bay on a tilt table can produce
this type of low frequency motion. Examples of such payloads include
the Inertial Upper Stage and Centaur with spacecraft. These pivoted
payloads can be characterized as having one dominant bending mode. Such
payloads can be as heavy as 65,000 Ibs. which is over a quarter of the
orbiter's 226,000 1bs. A great deal of analytic and simulation
analysis®'? has been done for pivoted payloads. This analysis has shown
that unwanted jet firings, undesirable excitation of the payload, and

even closed-loop instability can result from the low frequency payload-
orbiter dynamic interaction.
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Payloads attached to the Shuttle's Remote Manipulator System (RMS)
are another source of low frequency bending motion. This type of pay-
load-orpiter connection can be particularly troublesome because it may
involve many bending modes which may be hard to predict and that will
tend to vary with time as the RMS changes in configuration. Figure 5.11
shows roughly how the fundamental bending frequency tends to vary with

height above orbiter for different payload masses.

5.8 Prob] c { By Flexibilit

The bending modes that can cause problems are those that are sensed
by the IMU but are not filtered out by the state estimator. These modes
are only partially attenuated by the rate estimator and will be shifted
in phase by the delay in the IMU and from the phase lag introduced by
the estimator. With tight rate limits, the bending motion that gets
through may be large enough to cause jet firings. The added phase lag
may cause the jets to fire at the wrong time, further exciting rather
than controlling the flexible motion.

This destabilizing jet firing will lead to forced limit cycling,
which is undesirable for many reasons including excessive motion of the
orbiter, wasted fuel, and large excitation of the payload. To avoid
this unstable jet firing, various payload positions and orientations are
carefully analyzed with computer simulations with different deadbands
and rate limits before each flight . These simulations take a lot of

time and money. The range of stable RMS configurations is often found
to be very limited for large payloads.

By adding notch filters, it is hoped that the potentially destabi-
lizing bending modes can be removed from the feedback signal. 1In some
cases the forced limit cycling may be prevented from starting, or once

started, the frequency estimator can lock onto the unstable mode and
stop the jets from firing.
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Figure 5.10 Payload Attached to RMS
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CHAPTER 6

ANALYTIC ANALYSIS OF CLOSED-LOOP SYSTEM

6.1 Introduction

In this chapter a simplified s-plane model of the Shuttie's dynamics
and control system along with a describing function approximation of the
nonlinear phase plane controller are used to analyze the effect differ-
ent notch filters will have on the closed-loop system. Replacing the
nonlinear phase plane with a describing function allows for closed-loop
limit cyle prediction. The ability of the different notch filters to

prevent limit cycles is studied to select a filter design.

In addition to choosing the order of the filters, the describing
function analysis is also used to determine the best location for plac-
ing the notch filters. How errors in the bending frequency estimate
will affect the closed-loop system is also investigated. The results of

this analysis will help in deciding when the notch filter coefficients

should be changed.

6,2 Si .I]I t D ibi F E::-gn‘io

Describing functions are used to approximate the output of nonline-
arities for a given input form. The sinusoidal input describing func-
tion is calculated based on the assumption that the input to the
nonlinearity is a single sinusoid. The describing function is a quasil-
inear approximation; it is not strictly linear since it is generally a

function of the input amplitude and sometimes of the input frequency.
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The describing function, N(A,w), is chosen to minimize the integral
of the squared error between the actual output of the nonlinearity and

the describing function output over one period, Figure 6.1,

y (t)
>1 Nonlinearity ,
x(t) = A sin wt ) + e (t)
Describing Function A
y(t) | -
= N(A,0)
o4
choose N(A,w) to min [e (£)]? d+

T

Figure 6.1 Describing Function Approximation

The output of a symmetric nonlinearity can be expanded in a Fourier

series as

y(t) = T (A, sin n¥ + B cos n¥) (6.1)

where ¥ = ot. The approximate output component at the input frequency

that minimizes the integral squared error will simply be the first terms
of the series,

y(t) = A, sin ¥ + B, cos ¥ (6.2)

where
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1 2n

A, = :-ojzy(t) sin ¢ dv (6.3)
1 .

B, = —ofz;(t) cos ¥ dv (6.4)
k3

The input signal has the form
x(t) = Asin ¥ (6.5)
;(t) = Av cos ¥ (6.6)

Equation 6.2 can be rewritten as

A, B, -
y(t) = . x(t) + --= x(t) (6.7)

w

Replacing the time derivative by the Laplace transform variable s,

A, B,s
y(t) = (Z- + ===) x(t) (6.8)

w
But since the input is sinusoidal, s * jo and Eq. 6.7 becomes

Ay L Byl
y(t) = (;- + ;'J) x(t) = N(A,0) x(t) (6.8)

The describing function is often broken up into two components, the in-

phase and quadrature gains,

A 1
n, (R,0) = R ng(t) sin ¥ dv
A A ©
B ] (6.10)
e B ¥
ng(A,0) = R - 0./gy(t) cos ¥ d¥
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For a closed-~loop system with a nonlinearity as shown in Figure 6.2,
describing functions can be used to predict limit cycles.

Nonlinearity G (s)

'}

N{A,w)

7 G (s)

2\

Figure 6.2 Describing Function in Closed-Loop System
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The closed-loop system shown in Figure 6.2 is similar to the linear
system in Figure 6.3.

v

—> K > G(s)

Figure 6.3 Linear Closed-Loop System

The linear system will have a closed-loop transfer function of

Gey (8) = =======-=o- (6.11)

Poles of the closed-loop system will lie on the imaginary axis if

1 +KG(jw =0 (6.12)
or

G(jw) = -1/K (6.13)

Equation 6.11 can be solved numerically to find the appropriate gain K,
or K can be found graphically by plotting G(jw) for various freguencies
w, and piotting -1/K for various gains K. If these plots intersect,
then there will be a gain that will place closed-loop poles on the imag-

inary axis. The particular gain that will do this is the value of K at
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the intersection. Figure 6.4 shows an example of this graphica! tech-

nique with polar and gain-phase plots.

With the describing function, a limit cycle will be predicted if a

solution can be found to

1 + N(A,w)G(jw) =0 (6.14)
or

G(jw) = -1/NA,w) (6.15)

And as in the linear system, the above condition can be tested graph-
ically. An intersection of the G(jw) and -1/N{A,w) plots will indicate
a limit cycle. For most common nonlinearities, the describing function
will not depend upon the input frequency, but just upon the input ampli-
tude. This is true for the nonlinearity studied in this chapter, so
N(A,w)=N(R). Figure 6.5 shows this graphical technique on polar and

gain-phase plots.

In addition to predicting the presence of a limit cycle, the plots
can aiso be used to predict the limit cycle amplitude, frequency, and
stability. Figure 6.6 shows how this is accomplished by marking various
amplitudes on the -1/N(A) curve, and marking various frequencies on the

G{jw) curve.

To determine the stability of the 1imit cycle, the amplitude is per-
turbed stightly higher and lower than the limit cycle amplitude. If the
higher amplitude tends t6 increase further, then the limit cycle will be
unstable; if it tends to decrease, then the limit cycle will be stable.

Figure 6.7 show this stability determination on a polar plot.
It should be noted than since the describing function is oniy an

approximation to the nonlinearity, the presence or absence of a 1limit

cycle can only be predicted by this graphical method. To check whether
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a limit cycle really exists, the actual nonlinearity must be used in a

simulation.

§.2.2 2 £ D ibing Function A C

The accuracy of the describing function in modelling a nonlinearity
can be evaluated by looking at what is ignored. From Equations 6.1 and
6.2 it can be seen that the error in the approximation will simply be

the higher order terms of the Fourier series.
e(t) = §2(An sin nd + B cos ni) (6.16)
n=

For the closed-loop system, the single sinusoidal input assumption will
be good if the higher order terms are filtered out by the linear system,
G(s). for the Space Shuttle, the sharp cutoff of the rate estimator
will filter higher harmonics making the use of the describing function

approximation a good way of checking for limit cycles.

6.3 Describing F ion R . ¢ pt Pl

For most payload-orbiter interaction cases, flexural motion will
cause the rate limits to be exceeded before the deadbands. The forced
limit cycling that can occur will therefore generally involve rate limit
firings. The describing function representation of the phase plane will

be for rate limit firings only. The bias switch line is also ignored

for this analysis.

With these simplifications, the phase plane will act like a positive

hysteresis loop, Figure 6.8.
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The sinusoidal input describing function for this will be

) 6.17
0 ( )

2
2 [(A +JA2-1 ) - j1 for A>1
N(R) = {
for A<1

A plot of -1/N{A) is shown on a gain-phase plot in Figure 6.9.

6.4 Simplified R tati ¢ Shutt]

A simplified s-plane representation of the Shuttle's dynamics and
control system has been developed® to be used for limit cycle predic-
tion. The effect of adding various notch filters in different locations
in the control system can be studied with this simplified system. This
analysis of the closed-loop system will help in designing the notch

filters that will best prevent forced limit cycling from occurring.

6.4.1 Shuttle Dynamics

The Shuttle-payload dynamics are modelled as a rigid body plus one
bending mode. This representation will be particulariy good for the
pivoted payloads, but will also give some intuitive insights for more
complicated structures. Figure 6.10 shows this simplified model. The

variable, B, can be thought of as a weighting of the control spillover.
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6.4.2 Inertial Measurement Unit

The IMU is modelled as giving delayed, noise-free measurements. The

s-plane model will therefore be

e’ST X eme——-- (6.18)

where T is the time delay. This first order Pade approximation of the
delay was used to keep the model analytic. Both the delay and the
approximation have unity magnitude response and will introduce a phase
lag. Figure 6.11 shows that for the range of frequencies of interest,

the approximation is very good.
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6.4,3 State Estimator

A second-order transfer function is used to represent the rate fil-
ter. The jet feedforward information is assumed to be accurate with
respect to rigid body motion, so the input to the estimator will be the

measured attitude minus the rigid body attitude, Figure 6.12.

vernier jets

{.=0.5
w=0.2513
0q G (s)
- A
'] + mezs “b
2O a8 —
52+2;e"’e5+”22

Figure 6.12 Simplified State Estimator

The frequency response of this simplified model of the estimator is
shown in Figure 6.13. Comparing this to Figure 5.5 shows that the sim-

plified model is a good approximation to the vernier rate filter.
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6.4.4 Combined System

Figure 6.14 shows the combined system model. Two possible locations
for the notch filters would be after the measurement and after the rate
estimator. These two locations will give a different response because

of the jet feedforward information.

€ 1
-—**é%%v = e ¥

1+s7/2

RL = rate Jimit
N(A}) = describing function representation of phase plane

Figure 6.14 Combined Simplified System
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6.5 Stability Analysi

Figure 6.15 shows stability plots for different amounts of control
spillover. Larger B leads to intersections of the G(jo) and -1/N(A)
curves which will indicate a limit cycie. For the Shuttle, a limit

cycle will mean jet sustained oscillations.

Figure 6.16 shows how a notch filter added to the linear system can
affect the stability. Figure 6.17 shows a case where the 2" order fil-
ter prevents a limit cycle but the 4'" order does not. When the notch
filter center frequency is in error, this phase lag can be destabiliz-

ing, therefore only 2" order filters are considered.

This graphical technique for finding limit cycles can be used to
form a stability boundary. At a given bending frequency, B8 is varied
until the G(jw) and -1/N(A) curves intersect. A higher 8 will give
limit cycles, lower B will be stable. This analysis is carried out for
a number of bending frequencies to create a stability boundary as shown
in Figure 6.18. Figure 6.19 shows the stability boundary with a notch
filter added after the measurement and after the state estimator. Both
notch filters should dramatically reduce limit cycling, but the notch

filter placed after the measurement is seen to give the best perform-

ance.

Errors in the notch filter center frequency will reduce the effec-
tiveness of the filters. Figure 6.20 shows how the stability boundary
changes when the frequency estimate is in error by 5% low and high. A
high center frequency is seen to lead to greatly reduced stability.
This occurs because a phase lag is introduced at the bending frequency
with only partial attenuation.
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6.6 Desi id .

The stability analysis in the last section indicates that second-
order notch filters placed after the measurements will give the best
performance. This will also give a choice between the measured attitude
and the notch filtered attitude for the feedback signal. Deadband fir-
ings may occur with large amplitude bending motion usually involving
low-frequency payload-orbiter interactions. In such cases, feeding the

filtered attitude back may prevent instabilities.

Deciding when to change the notch filter coefficients has not yet
been addressed. Changing the coefficients on every cycle is unnecessary
and is probably undesirable. The frequency response of the notch fil-
ters is for steady-state. Constantly changing the coefficients will
give a complicated filter response. The coeffients should only be
changed when the frequency estimate differs from the center frequency by
a significant amount. The analysis in the last section showed that hav-
ing a notch center frequency above the bending frequency should be
avoided. The filter coefficients should therefore be changed sooner
when the fregquency estimate goes below the notch center frequency than
when it goes above. For this thesis, the notch filters have bandstop
frequencies 10% above and below the center frequency. The filter coef-

ficients are changed when the estimate goes 2% lower than the center

freguency and 5% higher.
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CHAPTER 7

SIMULATION RESULTS

Z.1 Introduction

A computer simulation of the Space Shuttle with payloads attached to
its robot arm is used to evaluate the effectiveness of the notch filters
in reducing instability. The payload-orbiter dynamics are highly
dependent upon the arm configuration. A particular payload will have
stable and unstable regions in which it can operate. The objective of
adding notch filters is to expand the stable operating range of payloads
attached to the Shuttle's flexible arm. The notch filtering scheme is
therefore evaluated by how well it expands the safe operating volume for

different size payloads.

7.2 ¢ ter Simulati

The computer simulation used is called LSAD (Less Singing And Danc-
ing) . LSAD was developed at Draper'' for engineering analysis involving
the Shuttle with payloads attached to its RMS. LSAD has a simplified,

linearized mode! of the arm dynamics along with a model of the Shuttle
and its control system.

LSAD was used for testing the notch filtering scheme because it has
been demonstrated to provide representative payload-orbiter dynamics and

is much cheaper to run than the high fidelity simulations that incorpo-

rate many second order effects.
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7.2.1 Stability Testi

To test the stability of a particular payload-orbiter configuration,
LSAD calcuiates the dominant bending mode and fires a jet couple to
excite this mode. If the resulting oscillation decays toward zero while

in a closed-loop attitude control mode, then the system is stable.

An array of different payload locations can be tested to determine
the stable and unstable operating regions. Figure 7.1 shows the simu-
lation results for stable and unstable cases using the Space Telescope
as a typical payload. The plots are of body rates and rate estimates

along with the vernier jet firings.

7.3 Simulation Resul

Two large payloads, the Space Telescope and the generic 65,000 Ib.
payload, were used fbr the simulation analysis. The Space Telescope
weighs around 25,000 Ibs. and is a typical example of the larger pay-
loads that the Shuttle deploys. The 65,000 lb. payload is the largest
possible payload the Shuttle will deploy and therefore will present a

worst case example in terms of low frequency payload-orbiter dynamic

interaction.

An array of points in the plane above the Shuttle were tested for
stability with and without notch filters. These points are plotted in
the vehicle's structural frame of reference which is shown in Figure
7.2. Figures 7.3 and 7.4 show the simulation resuits for the two pay-
loads. The addition of the notch filters is seen to dramatically

increase the stable operating region.

Figures 7.5 and 7.6 show what the stable limits of operation look

like at x=700 and x=800 inches for the Space Telescope. These figures

101



ORIGINAL PACE i3
OF POOR QUALITY

éii;::« ;“ ﬂ;A LA,\ ﬂ/ i i; :_. ‘ Ai |
s _VAVT\[__\[\['I:\{\Z“\T\W,_ IR
“vy»fafv“giww“v uEEE e
gkl T T

UNSTABLE (without notch filters)

STABLE (with notch filters)

Figure 7.1 LSAD

Stability Simulation for

102

Space Telescope

—_ x =700 y=20 z =600
v
Tn  ®ACLL AT X PITCH AT @ TAW AT & AGLL RE eritcH pg
o 4 TAW AE
T 3 T e
s ﬁ_”ﬂ/\ A A A 2 ;; ’
£ lGaataras : 1 & |
3 | = i il
. -3 3 : e
) )
A E “  1ne 83 200 - » n“"!.;ec 120 o 1 e o0 - ) “  me. tEC . 1
: 3 =
e} .
« 3 N N 2z ‘es \
5 £ I os no= =
< A P ] < s
3 < \ \v v I >
.' n A\ “ »® 08 128 e 1ed 3 5 Y 23 20 180 % : ™ L] Ll
. Ting. sEC e e » “ tinc ttc » Ting.sec
e n ; )
: /PA‘ v,%m—.—..i
3 3t M ‘ et a2
S 2yf = -
R | E i
ail 2t! l Tl
3 « " 06 - 2 ~ €3 e - L Y n " - co
ting, 588 Time, SEC -



ence

103



[coo-

Foo

ORIGINAL PAZE .13 |
OF POOR QUALITY |

Deadband = 2.0 ‘
Rate Limit = 0.02

s = stable i
o
m = marginally stab]
U = unstable ]
7007 X = geometrically
impossible posit1
660 |
-
P
b 3 . i 4 0
> :‘00 4':;: c'.:o 7oro foo . foo . fe<e  Hleo ‘ZOQ _ | X
/ P : : i 4
1 1
z O
,/ . I It S U S - e e e e
TEA
: with notch .
filters added
oo S = s = = <
o] s < .
= s s Bandpass Frequencies
0.055 - 0.065 Hz
0.070 - 0.090
TooA 5 < 5 5 5 S 0.100 - 0-150
¢c0d x % < = < 6 )
s
s
4 > o
i . - -
SJZGT £zco deo voo roo §co toe0 1les i2¢o

o————

— e —
e e e e

Figure 7.3 Stability Range for the Space Telescope

104




Figure 7.4 Stability Range for the 65k Payload
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show the difference adding notch filters can make in the stable handling
of large payloads.

Figure 7.1 shows one typical case where adding notch filters pre-
vents unstable jet firings from occurring. Figure 7.7 shows another

typical case where the system with notch filters initially experiences

unstable jet firings until the frequency estimator locks on to the bend-
ing modes and the notch filters center frequencies become close enough
to the bending frequencies to stop further unstable firings. For this

example, stability was regained after about seven low-frequency bending
cycles.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

The combination of fregquency identification and notch filters can
help reduce instabilities caused by flexible body dynamics spilling over
into the rigid body control system. The algorithm used is relatively
simple and easy to implement on a digital computer. Simulation results
for two large payloads attached to the Shuttle's robot arm show a large

increase in the range of stable operation when notch filters are added.

The frequency identification uses bandpass filters to isolate each
bending mode. Engineering judgment must be used in determining the num-
ber of filters and their passband frequencies for a given payload. The
identification method will work well when reasonable a priori knowledge

of the bending frequencies is available or when use of many, narrow

bandpass filters is acceptable.

The system might be made more adaptable by using the estimated fre-
quencies to vary the bandpass cutoffs. Allowing the passbands to vary
would place less importance on the initial cutoff frequencies, and thus
would make the system more autonomous. Perhaps one set of initial con-
ditions could be used for any payload which would remove the necessity

for preflight, payload specific analysis.

The ability of the system to identify and notch filter bending fre-
quencies reguires that the low-frequency flexibility consists of a few
distinct, dominant modes. The Shuttle-payload dynamic interaction can
generally be characterized by a few distinct modes. For many flexible
spacecraft, this may not be the case. The bending modes may be very
closely spaced together. The notch filtering scheme method for stabi-
lizing flexible systems will not work well for spacecraft with tightiy-

packed modes, requiring investigation of alternate filtering methods for
these applications.
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The frequency identification - notch filtering method reduces insta-
bility by filtering out the bending dynamics component of the measure-
ment signhal. The bending modes are left to damp themselves out. A more
sophisticated technique might use the identified bending mode frequen-

cies in conjunction with an active flexible body control system.

The use of notch filters to reduce observation spillover has been
shown to be effective in simulations of the Space Shuttle with large
payloads attached to its robot arm. Further work could be done, partic-
ularly on the frequency identification, to improve performance and to
make the system more autonomous. The notch filtering scheme shows a
potential for greatly expanding the range of stable payload operation.

It might also be useful for other flexible spacecraft.
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HAL/S STD 360-24.20

SRN STMT

ORIGINAL PACE I3
OF POOR QUALITY

INTERMETRICS,

000100 1058 M| FILTER:

000100 1058 M| PROCEDURE

000700 1058 W}

000700 1058 M|

000700 1059 M}

001000 1060 M]

001000 1060 M|

001000 1060 M|

001000 1060 M|

001500 1061 ™|

001500 1061 M|

001800 1062 M|

001800 1062 M|

001900 1063 M|

001900 1063 M|

002000 1064 M]

002000 1064 M|

002100 1065 M|

002800 1069 M

002800 1070

003000 1071

003800 1077

003800 1078
004100 1079

004200 1080

004300 1081

004500 1082

004600 1082

004700 1084

004800 1085

0043800 08¢

005000 1087

005100 1088

u
]

E

DECLARE ARRAY(3, 3, 2) SCALAR INITIAL(D),

INC.

SOURCE

MARCH 4,

1986

11:28:41.60

U_BP, U_BP_1, U_BP_2, U_BP_3, U_BP_ 4, Y_BP, Y_BP_1., Y_BP_2, Y_BP 3. Y_BP_4, F_BP_1,

F_BP_2, F_BP_3, F_BP_4, G_BP:

DECLARE MATRIX(3, 3) INITIAL(O),

Y_DLD, T_MEAS, OMEGA_MEAS, OMEGA_EST, U_EST_{, U_EST_2, Y_EST_%, Y_EST_2, F_EST_%,

F_EST_2, G_EST, OMEGA_N, OMEGA_BP_1, OMEGA_BP_2, OMEGA_NAT_EST, 2ETA_EST, NOTCH_WIDTH

. OMEGA_INIT, Y_A, Y_A_1, V_A 2, Y_A3, U A, U_A_Y, U_A_2, UA_3;

QECLARE MATRIX(3, 3) INITIAL(O),

UN, UN_1, UN_2, YN, Y_N_1, Y_N_2, F_N_1, F_N_2, 6. N_O, G N_1. GN_2:

DECLARE INTEGER INITIAL(O),
Ax1S, FREQ, BP, COUNTER, XAXIS.

DECLARE SCALAR,

NAXIS;

GAMMA_BP, FRAC, ANGLE_BP, TIME_STEP, OMEGA_A, F_A_1, F_A_2, F_A_3, G_A, Y_RATE;

DECLARE ARRAY(3, 3) BOOLEAN,
SWITCH N INITIAL(ON);

DECLARE BOOLEAN INITIAL(ON)}, FIRST:

IF FIRST = ON THEN

00:
READ(4) NAX1S, [NFREQ]:

.
READ(4) ONEGA_BP_1;

.
READ(4) OMEGA_BP_2:

GAMMA_BP * 0.8;

* *

OMEGA_BP_1 = OMEGA_BP_t 2 3.1416;

3 .
OMEGA_BP_2 = OMEGA_BP_2 2 3.1416;

»

READ(4) NOTCH_WIDTH;

L] .
OMEGA_INIT = (OMEGA_BP_1 + OMEGA_BP_2) / 2:

. .
OMEGA_N = OMEGA_INIT:

] *

OMEGA_MEAS * OMEGA_INIT:

. .
QHEGA_EST = OMEGA_INIT:
* *

U_EST_1 = OMEGA_INIT;

v *
U_EST_2 = OMEGA_INIT;
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005200

005300

005500

005600

005700
005710
0053800
005920

006100

006300
007000
007200
007200
007300
007300
007500
007600
007800
007900
008100

008200

ELU}

008210

008400
008600
008700
008800
008900
009110
009310
009310
009320
008320

008400

009600

010000
010200

010400

010400

010400

011000

011100

011200

011300

011400

1089

1090

1091

1092

1093
1094
1095
1096

1097

1098
1100
1101
1102
1103
1103
1104
1108
1106
1107
1108

1109

drr

1110

11414

1112

1113
t114
1115
1116
1116

1117

1118

1149

1120

1120

1120

1121

1122

1123

1124

1125

s
ci

|
o
q

!
H

L
S
S

H

y

1

. .

Y_EST_1 = OMEGA_INIT;

OMGINAL PAGE .IS
OF POOR QUALITY

* .
Y_EST_2 » OMEGA_INIT:

READ(4) OMEGA_NAT_EST:

. .

OMEGA_NAT_EST = OMEGA_NAT_EST 2 3. 1416:

*
READ(4) ZETA_EST:

READ(4) OMEGA_A;
XAXIS = 13
DO FOR AXIS = 1 TO NAXIS:

00 FOR FREQ = 4 TO NFREQ H
AXIS

TIME_STEP = O.16 NAXIS:
DO FOR 8P = {1 T0 2;
1F BP = 1 THEN

ANGLE_BP = 22.
ELSE
ANGLE_BP = 7.
CALL BANDPASS;
END:
CALL NOTCH;
CALL FREQ_EST:
END;

END:

CALL LOWPASS;

FIRST = OFF;
END;
SERII S 2200 A2 2000 EERRSRSERRRIRNRRERRERNGOERTERINEILRBRCISSEROIRRIIY
START OF RECURSIVE FILTER
B89 008 0028020380222 0082500RCRSSRB0RSRSRSRANNNSEINREIRRCGOISIRORRPENRINOGTSE
AXIS = XAXIS:
IF XAXIS = NAXIS THEN
XAXIS = ¢,
ELSE

XAXIS = XAXIS ¢ {;

DO FOR FREQ = § TO NFREQ
AX

u_ep
AXIS,FREQ, {

BANDPASS FILTERS;
DO FOR BP = 1 10 2;

v_Bp
AX1S,FREQ.BP

= F

+ F_BP_3

FREO,BP ~ axis,

G_BP (u_sp
AX1S,FREQ.BP

u_BP_4 -
AXIS,FREQ,BP

u_BpP_3 .
AXIS.FREQ,BP

u_BP_2 .
AXIS,FREQ.BP

u_BP_1 .
AXIS,FREQ,BP

Y_BP_4 .
AX1S,FREQ.BP

1S

= MEASURED_ATTITUDE H

AXIS

BP_1 Y_BP_t

_ -~ + F_BP_2 Y_BP_2
AXIS,FREQ,BP AX1S,FREQ,BP

T AXIS,FREQ,BP

+ F_BP_4 Y_BpP_4

Y_BP_3 .
FREQ,BP AXIS,FREQ,8P AXIS,FREQ,BP AXIS,FREQ,BP
-2uUBP2

¥ 4 u_BP_4
AX1S,FREQ.BP

_ ):
AXIS,FREQ.BP AX1S,FREQ,.BP

u_spr_3

AXIS,FREQ.BP
U_BP_2

AXIS,FREQ,BP
U_BP_1

AXIS,FREQ,BP

u_Bp :
AXIS, FREQ,BP

Y_BP_3 ;
AX1S,FREQ,BP
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FILTER
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FILTER
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011500 1126

011600 1127

011700 1128

011900 1129

012100 1130

012108

012116 11314

012124 1432

012124 1132

012136 1133

012140 1134

012144 1135

012148 {136

012152 1137

012156 1138

012160 1139

012168 1140

012168 1141

012172 1142

012172 1142

012176 143

012180 1144

012200 1145

012200 1145

012210 1146
012300

012500 1147

012500 1148

012600 1148

012800 1150

012900 1181

013000 1152

013000 1153

013400 1156

L}
s

"
S
S

™
S

»nETm

nE™m

nEM™M

M|
c|
H
S

L
S

sl
S

w|
s
M

S
L]

Y_8P_3 = Y _BP_2
AXIS,FREQ,BP

Y_BP_2 » V_BP_1
AX1S,FREQ,BP

Y_BP_1 = Y_BP
AX1S,FREQ,BP

u_se « Y_BP
AX1S,FREQ,2

END;
CHECK AMPLITUDE OF BANDPASS OUTPUT
2
u_a « 2 (v_BP
AXIS,FREQ

YA « F_A_Y Y_A_1
AX1S,FREQ AX1S

4+ 3 U_A_1 +

AX1S,FREQ = T Ax1s,FREQ

Y_A3 = v_A_2
AXIS.FREQ

Y_a_2 * V_A
AX1S,FREQ

Y_A_t = Y_A :
AXIS,FREQ AXIS,FREQ

U_A_3 = U_A_2
AX1S,FREQ

u_a_2? = U_A_1
AX1S,FREQ

U_A_t = U_A ;
AX1S.FREOQ AXIS,FREQ

Y_RATE = SQRT{ABS(Y_A
AX1S,FREQ

AXIS.FREO.1'

AXIS,FREQ,2

ORIGINAYL PACE .IS
OF PCTOR QUALITY

AXIS,FREQ,BP
AXIS,FREQ.BP

AXIS,FREQ.BP

+F_A2Y_A2

LFREQ

I U_A2

7 AxIs,FREQ
= 7 Ax1s,FREO

t :
AX1S,FREQ

T 7 ax1s,.FREQ

T T axis.FREQ

¢ .000001)) OMEGA_N

IF Y_RATE < (RL_REQUEST / 3) THEN

SHI%CH_N = OFF;
AX1S,FREQ:

ELSE

Do;

~ ax1S,FREQ

4 U A3

If Y_RATE < (RL_REQUEST / 2) AND SWITCH_N

SVIiCH_N = OFF;

AX1S . FREO:

ELSE

SWITCH_N = ON;

T AXIS,FREQ:

END;

MEASURE FREQUENCY FROM CROSSING TIMES;

IF SIGN(V_BP
AX1S,.FREQ,2

00:

FRAC = TIME_STEP Y _OLD
AX

T_MEAS = T_MEAS

AXIS,FREQ

OMEGA_MEAS
AX1S,FREQ

1f COUNTER < 300 THEN

OMEGA_MEAS
AX1S,FREQ

AX1S, FREQ:

) NOT = SIGN(Y_OLD ) THEN

AXIS, FREQ

/(v

1S,FREQ

AXIS, FREQ

« 3.1416 / T_MEAS

* OMEGA_INIT

Y_OLD
AXIS,FREQ

+ FRAC;

AXIS.FREQ

AXIS.FREO.

T_MEAS = TIME_STEP - FRAC:

Avie rorn
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+ F_AIY_AD
 AXIS,FREQ

)_A_ I H
AXIS,FREQ

AXIS, FREQ

= QFF THEN

_8p }:
AX1S.FREQ,2

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER
FILTER
FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER




013700
013700

014000
014100

014100
014300

014500

014700
014700
015000
015100
015200
015200

015700

015900

015900

016100

016300

016500

016500

016800

016300

017000
" 017200
017400
017700

019915

1158

1158

1159
1160

1160

1161

1162

1162

1163

1164

1165

1166

1167

41167

1168

1169

1169

1170

AR A

1172
$173
1174

1175

|
el
o

|
$

o
l

¢

s
L
s
s
!
s
£
M
s
cl
!
s
s

M

u
n
|
L

cl

2 OMEGA_MEAS = OMEGA_EST (1.0 + 0.1 SIGN(OMEGA_MEAS -
AXIS . FREQ AX1S,FREQ AX1S,FREQ
2 OMEGA_EST
AX1S,FREQ
1 END;
1 ELSE
1 T_MEAS » T_MEAS + TIME_STEP;
AX1§,FREQ AXIS,FREQ
1 Y_oLo = y_8p :
AX1S,FREQ AXIS.FREOQ,2
ESTIMATE FREQUENCY FROM NOISY MEASUREMENTS;
1 OMEGA_EST = F_EST_A1 Y_EST_1 + F_EST 2 Y_EST_2 +
AX1S,FREQ AX1S ,FREQ AX1S,FREQ AX1S,FREQ AX1S,FREQ
1 G_EST (OMEGA_MEAS ® 2 U_EST_I + U_EST_2 ):
AX1S,.FREQ AXIS,FREQ AX1S,FREQ AXIS,FREQ
1 Y_EST 2 = yY_EST_1 H
AXIS,FREQ AXIS,FREQ
1 Y_EST_1 * OMEGA_EST :
AX1S, FREQ AXIS,FREQ
| U_EST_2 = U_EST_14 H
AXIS,FREQ AXIS,FREQ
1 U_EST_1 = OMEGA_MEAS i
AX1S, FREQ AX1S,FREQ
TEST REASONABLENESS OF ESTIMATE
1 IF (OMEGA_EST < OMEGA_BP_t 0.8) OR (OMEGA_EST > OMEGA_BP_2
AXIS,FREQ AXIS, FREQ AX1S,FREQ AXIS,
1 1.2) THEN
FREQ
1 SWITCH_N « OFF;
AX1S FREQ:
DECIDE WHETHER OR NOT TO CHANGE NOTCH CENTER FREQUENCY
1 IF (OMEGA_EST - OMEGA_N ) / OMEGA_N > NOTCH_WIDTH / 2 OR {
AX1S,FREQ AXIS.FREQ AXIS,FREQ AXIS,FREQ
b} OMEGA_N - OMEGA_EST ) / OMEGA_N > NOTCH_WIDTH / 5 THEN
AX1S,FREQ AXIS,FREQ AXIS,FREQ AX1S,FREQ
t N
2 OMEGA_N = OMEGA_EST H
AX1S,FREQ AX1S FREQ
2 CALL NOTCH;
1 END;
END;

COUNTER = COUNTER ¢ 1;
NOTCH FILTERS
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|
|
|
|
|
|
|
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l
l

FILTER

FILTER

FILTER
FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER

FILTER
FILTER
FILTER
FILTER

FILYER



019920 1181 M|

020100 1192 ul 1
s

020300 1193 N‘ 2
S

3
1194 M
S

020500

020500 1195 M| 2

020600 1196 ul 3
S

020600 1196 u‘ 3
020600 1196 n| 3
021100 1197 M| 3
021200 1198 M} 3
021300 1199 Ml 3

021400

[N

021600 1201 M|

021800 1202 M| 2
021800 1202 M| 2

1203 M} 3
S

022000

1204 W] 3
S

022100

1205 M| 2
S

022200

1206 M| 3
S

022300

1207 M} 3
S

022400

[N

022600 1208 M|

022800 1208 M| 2
S

022800 1210 M| 2
S

023100 1211 M| 1

DO FOR AXIS = 1 1O NAXIS:

1212 M| 1

)

1213
S

-

1214 M|
1214 ¥ 1
S
sl

023400 1215 M|

[IvRve.

| FILTER

DO FOR FREQ » 1 TO NFREQ H FILTER
AX1S
U_N = MEASURED_ATTITUDE : FILTER
AXIS, 1 AXIS
1F SWITCH_N - ON THEN FILTER
Ax1S,FREQ:
00; | FILTER
Y_N = F_N_1 Y_N_1 + FN_2 Y_N_2 + 6_N_O l FILTER
AX1S.FREQ AXIS.FREQ AX1S,FREQ AXIS,FREQ AX1S,FREQ
U_N + G_N_1 U_N_1 + G_N_2 | N_2 FILTER
AXIS,FREQ AX1S,FREQ AX1S,FREQ AX1S,FREQ AX1S,FREQ AXIS,
: | FILTER
FREQ
N2 = Y_N_t : I FILTER
Ax1S,FREQ AXIS.FREQ
Y_N_1 = Y_N : FILTER
AX1S,FREO AXIS,FREQ
U_N_2 = U_N_1 : | FILTER
AXIS,FREQ ax1S.FREQ
 N_1 = UN : FILTER
AX1S,FREQ Ax1S,FREQ
END; | FILTER
ELSE | FILTER
DO: | FILTER
Y_N_2 * UN : | FILTER
AXIS,FREQ AX1S,FREQ
Y_N_1 = UN : FILTER
AXIS,FREQ AX1S,FREQ
Y_N = UN : | FILTER
ax1S.FREQ AX1S,FREQ
N2 = UN : | FILTER
AX1S,FREQ AX15.FREQ
U_N_1 = UN f | FILTER
AXIS,FREQ AXIS.FREQ
END; | FILTER
IF FREQ < NFREQ THEN FILTER
AXIS |
U_N = Y_N : FILTER
AXIS,FREQ+1 AXIS,FREQ l
END; | FILTER
1F NFREQ = 0 THEN
XIS | FILTER
ATTITUDE = MEASURED_ATTITUDE : FILTER
[33 8 AX1S |
ELSE | FILTER
ATTITUDE = YN : FILTER
AXIS AX1S . NFREQ
AXIS
END: | FILTER
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023515
023515
023525
023525

023530

023535

023540

023545

023550

023555

023560

1216
1216
1217
1217

1218

1219

1220

1221

1222

1223

M| LOWPASS:

M| PROCEDURE:

|
.
H

E
]

3
L}

DECLARE SCALAR,
DEN, R;
R = TAN(OMEGA_A 3.1416 TIME_STEP);

2 3
DEN = 1 + 2R+ 2R *+R

2 3

FAts(3+42R-2R -3R)/DEN:
2 3

FA2s(-3¢2R+2R -3R)/DEN;

2 3
FA3=(4-2R42R - R)/DEN:

3
G_A » (R ) / DEN;

1224 M| CLOSE LOWPASS;

sres BLOCK

SUMMARY so90¢

DUTER VARIABLES USED
OMEGA_A, TIME_STEP, F_A_1¢, F_A_ 2%, F_A_3*, G_A*

023600 1225

023600 1225

023800 1226

023800 1226

024000 1227

024100 1228

024300 1229

024400 t230

024500 1231

024600 1232

X WVwEmM

M| FREO_EST:

M| PROCEDURE;

S

wnEm

VwEM™

NAE™M

sest BLOCK

DECLARE SCALAR,
DUMMY, W_EST:
W_EST = TAN(OMEGA_NAT_EST
AXIS,FREQ

DUMMY = ¢ 4 2 ZETA_EST
AXIS,FREQ

2
F_EST_% = (2 - 2 W_EST ) / DUMMY;
AX1S,FREQ

F_EST_2 = (-1 4 2 ZETA_EST

~ AX1S,FREQ AXIS,FREQ

2
G_EST = (W_EST ) / DUMMY:
AXIS,FREQ

| CLOSE FREQ_EST;

SUMMARY tses

OUTER VARIABLES USED
AX1S, FREQ. OMEGA_NAT_EST, TIME_STEP, 2ETA_EST, F_EST_t*, F_EST_ 2%, G_EST*

TIME_STEP / 2);

2

W_EST + W_EST ;

2
W_EST - W_EST ) / DUMMY;

120

LOWPASS
LOWPASS
LOWPASS
LOWPASS

LOWPASS

LOWPASS

LOWPASS

LOWPASS

LOWPASS

LOWPASS

LOWPASS

FREQ_EST
FREQ_EST
FREQ_EST
FREQ_EST

FREO_EST

FREQ_EST

FREQ_EST

FREQ_EST

FREQ_EST

FREQ_EST




ORIGINA!, pagE
. PAGE |s
OF POOR QuALITY

024800 1233 M| BANDPASS: | BANDPASS
024800 1233 M| PROCEDURE; ) | BANDPASS
025000 1234 M| DECLARE SCALAR DOUBLE, | BANDPASS
025000 1234 M| OMEGA_1, OMEGA_2, D3, D2, DY, DO, N2, DUMMY, OMEGA_C, ZETA_BP, ANGLE; | BANDPASS
025300 1235 M OMEGA_1 = TAN(OMEGA_BP_1 TIME_STEP / 2); BANDPASS
1 AXIS.FREQ
025400 1236 M OMEGA_2 = TAN{OMEGA_BP_2 TIME_STEP / 2); BANDPASS
H AXIS,FREQ
025500 1237 M) OMEGA_C = OMEGA_2 - OMEGA_1; | 8anppass
026000 1238 M| ANGLE = ANGLE_BP 3.1416 / 180; | eanprass
026200 1239 k| 2ETA_BP = COS(ANGLE): | BaNDPASS
E 2
026400 1240 M N2 = OMEGA_C ; BANDPASS
026500 1241 M| D3 = 2 ZETA_BP OMEGA_C; | BaNDPASS
026600 1242 M| D2 = 2 DMEGA_t OMEGA_2 + N2; | BanDPASS
026700 1243 M| D1 = D3 OMEGA_1 OMEGA_2; | BANDPASS
£ 2 2
026800 1244 M DO = OMEGA_1 OMEGA_2 : BANDPASS
026500 1245 M| DUMMY = 1 4 DO + D1 4 D2 + D3; | BANDPASS
027100 1246 M F_BP_1 = (44203 -2D1 - 400/ DUNMY; BANDPASS
S AX1S,FREQ,BP
027200 1247 M F_BP_2 = (-6 4 202 - 6 DO) / DUNNY; BANDPASS
s AXIS,FREQ,BP
027300 1248 M F_BP_3 « (4-203 4201 -400) / DUMMY; BANDPASS
S AX1S,FREQ,BP
027400 1249 M F_8P_4 = (-t 4+ D3 - D2+ D1 - DO} / DUMMY; BANDPASS
S AXIS,FREQ,BP
027500 1250 M G_BP = N2 / DUMMY; BANDPASS
s AX1S,FREQ,BP
027600 1251 M| CLOSE BANDPASS; | BANDPASS
028100 1252 M| NOTCH: | NoTCH
028100 1252 M| PROCEDURE; | NoTCH
028300 1253 M| DECLARE SCALAR, | NOTCH
028300 1253 M| OMEGA_1, OMEGA_2, OMEGA_C, N2, N1, NO, D2, Dt, DO: | NoTCH
028600 1254 MI DMEGA_1 = (1 - NOTCH_WIDTH ) OMEGA_N : ' NOTCH
s AXIS,FREQ AXIS,FREQ
028700 1255 u| OMEGA_2 = (1 + NOTCH_WIDTH ) OMEGA_N : NOTCH
S AX1S.FREQ AXIS,FREQ
028900 1256 M| OMEGA_1 = TAN(OMEGA_1 0.16 / 2); [ ~oTCH
029000 1257 M| OMEGA_2 = TAN(OMEGA_2 0.16 / 2); | NoTCH
029100 1258 M} OMEGA_C » OMEGA_2 - OMEGA_1; | NOTCH
029300 1259 M| N2 = 1 ¢ OMEGA_{ DMEGA_2; | NotCcH
029400 1260 M| Ni = -2 4 2 OMEGA_? OMEGA_2: { NoTCH
029500 1264 M| NO = N2; | NoTcH
029600 1262 M| D2 = 1 + OMEGA_C + OMEGA_1 OMEGA_2; | NoTCH
029700 1263 M| 01 = Ni; } NoTcH
029800 1264 M| DO = { - OMEGA_C ¢ OMEGA_1 OMEGA_2; | NoTcH
030000 1265 M F_N_1 . -D1 / 02; I NOTCH
s AXIS,FREQ
030100 1266 M F_N_2 + -D0 / D2: I NOTCR
s AXIS,FREQ
030200 1267 M G_N_O « N2 / D2; . | NOTCH
H AX1S,FREQ
030300 1268 uI G_N_1 = Nt / D2; ‘ NOTCH
[ AXIS,FREQ
030400 1269 M|  G_N_2 « NO / D2: { NoTcH
sl AXIS,FREQ
| NotcH

030500 1270 M| CLOSE NOTCH:
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